Biminimal Legendrian surfaces in 5-dimensional Sasakian space forms
نویسندگان
چکیده
منابع مشابه
Legendrian Warped Product Submanifolds in Generalized Sasakian Space Forms
Recently, K. Matsumoto and I. Mihai established a sharp inequality for warped products isometrically immersed in Sasakian space forms. As applications, they obtained obstructions to minimal isometric immersions of warped products into Sasakian space forms. P. Alegre, D.E. Blair and A. Carriazo have introduced the notion of generalized Sasakian space form. In the present paper, we obtain a sharp...
متن کاملWillmore Legendrian surfaces in pseudoconformal 5-sphere
where B0 is the trace free part of the second fundamental form of X. It was introduced by Willmore in a slightly different but equivalent form for surfaces in E. The functional is invariant under conformal transformation, and it is natural to extend it for submanifolds in conformal N -sphere S = E ∪ {∞}. Willmore conjecture asks if Clifford torus in S is the unique minimizer of W(X) among all i...
متن کاملSurfaces of constant curvature in 3-dimensional space forms
The study of surfaces immersed in a 3-dimensional ambient space plays a central role in the theory of submanifolds. In addition, Riemannian manifolds with constant sectional curvature can be considered as the most simple examples. Thus, one can think of surfaces with constant Gauss curvature in the Euclidean space R, hyperbolic space H or 3-sphere S as very natural objects of study. Through the...
متن کاملContact CR-warped product submanifolds in generalized Sasakian Space Forms
In [4] B. Y. Chen studied warped product CR-submanifolds in Kaehler manifolds. Afterward, I. Hasegawa and I. Mihai [5] obtained a sharp inequality for the squared norm of the second fundamental form for contact CR-warped products in Sasakian space form. Recently Alegre, Blair and Carriago [1] introduced generalized Sasakian space form. The aim of present paper is to study contact CR-warped prod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2007
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm108-2-11